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SUMMARY

OB.JECrIVE
Determination of the first two moments of the ALE output detector statistics

for sinusoids in white noise.

RESULTS
Moments were determined for the output , short-term integrated output, and long-

term integrated output power spectra .

RECOMMENDATIONS
These results may be implemented on a computer to calculate ROC curves for the

ALE output detector and thus aid in the determination of parameters such as p, filter
length , and EFT resolution. 
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INTRODUCTION

This paper consists, basically, of a computation of the first two moments of the
output distribution of the adaptive line enhancer (ALE) detector (figures 1 and 2). Its
prImary motivation is to provide a means of determining the detection characteristics of
the integrated spectral output.

Previous results [1 1 have relied on assumptions regarding the output statistics them-
selves; i.e., that they be chi-square distributions. Although such an assumption greatly
simplifies the analysis, it introduces an artificial relationship between the first two moments,
which prevents a rigorous application even in the limiting Gaussian case typical of post-
detection integration. lr~ the present work we shall make only two assumptions; that the in-
put to the detector be a sinusoid in whi te Gaussian noise, and that the discrete Fourier trans-
form (DFT) length and ALE filte r length be considered smaller than r , the adap tive time
constan t of the ALE filter.

We then compute the moments of the ALE detector for three cases: (a) a single power
spectrum ; (b) a short term average of the output (integration time <r) ;  and (c) long-term
average (integration time > ‘r). The distinction between the two types of averaging is related
to the behavior of the converged ALE filter which is nearly constant over periods of time less
than r [2 1.

The above results are independent of any assumptions on the output statistics. If a
model for the distribution is known , for example empirically, the receiver operating charac-
teristic (ROC) of the detector may be computed. In particular , for second order distributions,
the ROC curves are determined by the first two moments as follows. Let p0 and p 1 be the
normalized probability densities (mean zero and variance I)  corresponding to the output
under the hypotheses sign al , absent and sign al present , respectively . Also, let Mo~ M 1~ and

be their means and variances. Then the probabilities of detection and false alarm are given
by

~F J P O
I-Mg

~D f P j
( 1)

- 

- 
For example , in the case of a Gaussian distribution (which occurs for sufficently

large integration times) for a given false alarm rate , the threshold , a, may be found in
standard tables. Then
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T-~~ (2)
00

which implies

I—p 1 aag + p 0 — M l  (3)
01

and 
~D is also determined from tables.
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MOMENTS OF INTEGRATED OUTPUT

Let y be the output of the detector pictured in figure 1 given by

y = l l ( w * x) 12 (4)

where w and x are the weight vector and input vector of the ALE , * denotes convolution ,
and 3 indicates a K point discrete Fourier transform (DFT) at frequency ~~

,. For a sinusoid
input ,

X Q(k) A cos W (k Q) + fl(k) . (5)

The converged weight vector may be writte n [1 ,2 ,31

w 2(k) = B cos (~1.,Q +~~) + n 2(k) , (6)

where n(k) is a Gaussian white noise process and n ’(k) is an independent stacionary Gaussian
vector process with a correla t ion time of the order r. The individ ual com ponen ts n2 are
independent identically distributed random variables.

+ 
~~ e( k)

w~ k)

ALE 
KPO INT

z(k )

Figure 1. Block diagram of the ALE output detector.

The first moment of y was computed in [1 1. The computation of the second
moment is straightforward , although extremely tedious , and has been relegated to the
Appendix . We therefore address ourselves here to a discussion of the effects of averaging.
To do this, it is convenient to separate the effects of x and w through the use of conditional
expectations.
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Let E( 1w) denote conditional expectation, given w. Define

v = E (y lw)

= E(y) . (7)

Then v is a random variable dependent only on w and

(8)

It follows that E(y — v) = 0. and

E (v(y_v ) = E fE (v (y_v) Iw) I = E (vE (y_ v lw)j  = 0

Thus we may write

y = ( y — v ) + v

and

v a r ( y ) = v a r ( y — v ) + v a r ( v )  , (9)

where var indicate s va riance.

SHORT-TERM AVERAGE

Let y(m) denote the output due to the 2m th DFT.t The output is chosen every other
DFT because , as a result of the convolution in (4), it is independent with respect to x only
every othe r DFT (every K + L points for K < L). The effects of averaging every DFT or of
overlapping DFT’s may be computed after the manner of Appendix B, but in most cases of
practical interest will be inconsequential (cf(2 I )).

Suppose that w(k + mK) is essentially constant for k ( K, m = 1, ... , M and MK <r .
Although this is usually the case, it is only necessary to assume that K <r. A more accurate
t reatment appe ars in Appendix B. Define the short-term average variable z by

y( m)

~~~~~~~~~~~ 

(y( m ) - v ) + v  , (1 0)

t actually m • max (2K, K 4 L)/K
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whit h follows since v depends only on w and hence is independent of m. Let us determine
the variance of the first term in (10):

E ~ Z (y(m) — v) 2) = E(y(m) — v)(y(r) — v)

E E ((Y(m) _ v)(Y(r) _
v)tw)J

m,r

_~~E 5m ,r 1
~ (~~ m _ v 2 i w)}

=~~~ E(y — v)~ . ( 11)

Since the first term of (10) has zero mean , and since E(v (y(m)—v)) = 0, equations (10)
and ( I I )  yield

var (z)~~~~var ( y _ v ) + var (v) . ( 12)

From (9) and ( 12)

var (z) var (y) + (~~~

_ I )  var (y — v) . (13)

VARIANCE OF y-v

We now express the second term in (13) in a form suitable for computation. Since
E(y—v) = 0,

var (y — v) E(y — v) 2

E [E ((Y _ V) 2 iw) )

E[var x(r) J (14)

where r is equal to y, considered as a random variable in x with w as a parameter. Note tha t
the “mean ” of r is E(y~w) = v , and both its “mean ” and “variance” are functions of the
random variable w. The subscript x is included to avoid confusion with expectation taken
with respect to the entire sample space.

From (4), we see that for fixed w, 3(w * x) is complex Gaussian , and hence r is
chi-square (possibly noncentral ) of two degrees of freedom. Let the mean-squared and one-
hal f the variance of the complex Gaussian process 3(w *x) be given by

7 
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??~~
= IE~ Y(W~” X)I 2

x~ =4( E~~~ w *x)I 2 _
~~~) . 

(15)

Then the mean and second moment of r are [31 (the noncentrality paramete r is t~ /X~)

mean~~r = v = 2 X
~
+
~~

var~ r=4X~ + 4 X f l .  (16)

It follows from (16)

‘ 4var x r v _ l
~r . 

(17)

Equations (14) and (17) yield

E[var (y— v)1 E(v2)_E(,1~) . (18)

Also, from (9)

E[var (y— v)1 E(y2)—E(v 2) - 
(19)

Adding these two expressions, we have

ELvar(y — v)1 E(y2)_~~E(T~~) . (20)

In this manner , we have removed the var iable v from our calculations. The substitu-
tion of ( 20) in (13) yields

var( z) F(y 2) ( ~~+~~~ ) _,f 4- E(~i~ ) (.~5 — ~~~ ) . (21)

To evaluate this expression we need to know the firs t two moments of y (E(y 2) and p2 ) and
4 

y
E(17 ). The firs t moment is available in [1 1 ,t the second is calculated in Appendix A, and we

proceed to determi ne E(~~ ).

~~ In the notation of (11 , E(y) = o~ + + +

8
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CALCULATION OF E(r7~ )

Let L be the length of the ALE. In order to simplify calculations , it is assumed that
the analysis frequency ~ is bin-centere d , both with respect to the DFT and ALE ; i.e.,

= multiple of 2ir and wL = multiple of 2ir . This assumption only affects terms of lower
order in K and L (cf Appendix A), and hence will not change the final result.

For w fi xed the mean of3(w *x) is given by

E
~ (~

(w *x)) E
~ ~~ w2 x2(k0+n ) e ’~~

~~l n 1

= w2 A cos (~
(n — Q) + ~~~~~

Q 1 n 1

= 

~~ 

W Qe~~~~
2 

K—Q 

cos (~ (n — Q) +~~)e (1
~~
)

wQ ~~~~ ~~ A cos (wn’ + 0) ~~~~~
n’ l—Q

Since K is a multiple of the period of cos (wn’ + ~ ), the second sum is independent of £, and

E
~
(
~

(w * x)) = 
~~~~ 

3K(A cos (wn -1- 0)) . ( 2 2 )

Thus, from definitions (15) and (22)

-
~ 

1
C 2 A~-K~-= 

4 
3L(’~

’) - (23)

We now note that l~L
(w)h considered as a function of w is a chi-square random

variable with two degrees of freedom. Let

(24)

Then expre ssions( 15) and ( 16) apply with

~
2 _ L72

9
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and

2 L2 B2
4

Thus

E~1L(w) I 4 = second moment

L 2 74
~~ 8 L3 72 B 2

~~L4 B4 
(2 5 )

Combin ing this with (23) we have

E(~
4 ) = 

A4 K4 
~2L 2 72 + L3 B 2 

72 + ~~~~~ (26)

WNG-TERM AVERAGE

Consider the average output over a time longe r th anr

NM

YQ . (27)
Q=1

This may be rewritten, for MK <r ,

~~~=l (M Q=l )

s l  
z(S) . (28)

The random variables y are a function of x and w. Since the same x(k) do not appear in
y(k 1) and y(k2) for k 1 * k,. and since the time dependence of w(k) is exponential with a
correlation time r , z(s) has a time dependence of 2r (w is squared in equation (4))

E (z(s 1 ) z(s 2)) E(z 2) e 2 _S2 VT (29)

10
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Consequently , if N = T/ r >> I , where T is the processing time,

var (z) ’-~~~var (z) . (30)

Roughly speaking, the long-term average may be considered an average of the short-term
average, with independent samples at intervals of r. A more exact treatment is found in
Appendix B.

11 
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SUMMARY OF RESULTS

Let us write the weight update algorithm for the ALE in the following form

w Q(k+l) w Q(k) +2 M e(k) X Q(k) , (31)

where X Q(k) is defined in (5), and e(k) is the error at time k as pictured in figure 2. Define
the following quantities

1 1
= input noise power E(n~ )

SNR total signal power/v 2

* L SNR
a - ~~ L- l + ySNR

7
2 = E(n ’2 )

~‘ 1A P ( i + ( 1  ~_ a *)SNR) , (32)

where n and n’ are the noise processes of equations ( 5 )  and (6), and SNR is the input signal
to noise ra tio.

x ( k )
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _  

Ø
e ( k)

z-.
~ 

~ ~iJ 
‘ S  ~~~~ f~—~1 L~J

_. S •

I + —

+ 
Ø r(k)

Figure 2. Block diagram of the Adaptive Line Enhancer (ALE).
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It then follows [2 ,31 that W Q has the form (6) and

A2 2v 2 SNR

E(n~
2) = 72

B2 = ~~ (a*)2 (33)
L2

~~~~~~2 (i +4sr~R)

where

L = ALE filter length .

Let K be the DFT length in the ALE output detector pictured in figure 2 and
assume that max (2K , K + L) << r. Then a single output of the detector , y, with no
averaging has mean [ 11

= E(y)

,,
2

p
2

L K ÷
7

2
A

2
U(

2 

+ A 2 B~~~
2 L2

+ B 2 P 2 D

where

K 2L K3
K~~ L

D (34)
L2K L3

K > L

Its variance, as computed in Appendix A , is

var (y) = E(y 2) — (35)

where

E(y 2) = ~~ A2 v2 D 1 + 7
4 v4 D2 + B4 A 2 v2 D3

+B~~v~ D4 +B 2 72 A2 v 2 D5 +B 2 72 v4 D6

+74 A~~D7 + B 2 72 A4 D8 + B 4 A4 D9 , (36)

13
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and

K2 [2KL 2 — L 3/31 , K)’ L
(37)

K 2 (KL 2 + K 2L — K 3/31 , K~~ L

‘ ‘4  L4
4 K L ~~~j~KL 

~T K > L

(38)
1 14  K4

2 K ~- L - + ~~K L~~-r K < L

K 2 L 2
IKL 2 _ L 3/3 1 ,

D3 = (39)

~~IKL 2 _ L 3/31
2 

,

(40)

k K 2 L _ K 3/3 1 .

i~~ . [4 K L 2 _ L 31
D5 (4 1)

.!~~~ [3K 2 L + K L 2 .... K3I K’~~L

2 K 2 L3 _ K L 4 +~~~L5 
. K > L

L5 KL4 3 ‘ 13 ‘ 8 7D6 = ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ , K < 1~~~2K

L2 K 3 +~~K4L _ ~~~K 5 
, 2K~~ L (4 2)

D7 = K4 L2/8 (43)

D8 = K4 L3/ 16 (44)

D9 = K4 L4/256 (45)

14
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Now , suppose the output is averaged over a processing time I

~4 / y d t ’~ j~~~~ Y(i) (46)

where

N=T/max (2K,K+L) (47)

Then

var (~~)~~~~ (E(y 2)_ E(n~ ))

I ‘ I 4+ q( -~ E(y~~ _ M y
_ +~~E (flr )) (48)

where

E(4) is given by (26)

E(n~ ) = y 4 A4 D7 + B 2 72 A4 D8 + B 4 A4 D9 , (49)

and q is, from (B-8),

q~~~~~~~~~~~ IT +~~(t~
2hhT _ 

1)1 (50)

Note that for large I

q
’
~~~~~~~ 

T>> r . 
(5 1)

If we write

‘— I

M = N / N g (52)

I S

- - - -— — -— - — - ~~~~
_ j- —-
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then

var (z ) - ”--~~-- 
[
E(Y 2

)(~k+~~~)_ 1 + E(I~~) (+_~~
i)J 

(53)

which is (30).

SIMU LATION

M. Dentino [5 1 provides several Monte Carlo simulations of the ALE for a sinusoid
in white Gaussian noise and plots their ROC curves. Figure 3 contains the results of one of
these sim ulatio ns, for which the conditions max (2K , K+L) << r and r <<Tare satisfied. The
corresponding ROC curve , computed using the formulae of this report under the assumption
of a Gaussian output , appears in the same figure. The results are in excellent agreement.
Note that in this case K = L and r/K 72 and T/r 8.5.

100.0 • ____________

!

80.0 .

60.0 -

40.0 -

~~~20.0 -
0.

0.0 I I I
-.40.0 -38.0 -36.0 -34.0 -32.0 —30 0

SIGNAL TO NOISE RATIO , dB

Figure 3. Comparison of computed ROC curve (solid
line) to Monte Carlo simulation (X) for ~F =
I = 629,760, pp2 = 7.6— 10 6, and K = L = 1024.
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MOMENTS RATIOS - NOISE ONLY

For noise only, we have

4 K 2 L2 _~~KL3 + L 4/3 , K~~ L

2 K 2 L2 +4.K3L _ K 4/3 ,

Thus

K>> L

2py K = Lvar(y) 2

I K < < L .

Since this ratio is I for a chi-square distribution of two degrees of freedom, the output
distribution is in general not chi-square as hypothesized in [11. Nor is it K0 (ratio 1/3) for
K = L as maintained in [61 .

.4

L 

17
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APPENDIX A: E(y2)

Our starting point is equations (5) and (6)

x k_Q = x2(k) = A co (k +- n(k 2)

E (n(Q) n(m)) = ~~ 2

(A-I)

= wQ(k) = B cos (c~,Q + 
~~) 

+ n~

E(n~ n~~) = 7 6Qm

E(n n’) 0

where w2(k) is assumed independent of k for max (2K , K + L) <(i  (see (B-2)) .

N ote that

7(w * x) ~~~e~~ ’1~ ~~~~ W Q X k 2

= ~-~iWQ 
~2 ~~~~~~~ “k—Q

= ~~ ~~~~ ~~ ~~ e 1
~’~ ~~

2 l  s 1—Q

Thus

1 1E(y ) = E 13(w * x) 1

L
i(2 1—2 2+Q 3—2 4)W

= E  w2 1 w22 w2 3 w24
e

I ‘~2 3 ’~4

K—Q 1 K—2 , K—2 3 K—2 4
• x~1 

x5~~X
53

X~4
s~~ l— Q i s-~~1— Qi s3 1 2 3 s4 1—2 4

• ~~ ~~~~~~~~~~ 
, 

(A-2)

19
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The products of w and x each have three non-zero types of terms.

type 1: cos cos cos cos

type 2: cos cos n n (6 terms)

type3 : n n n n . 
(A-3)

All terms containing an odd number of noise terms are zero since E(n) = E(n ’) = 0. An even

product of n ’s will produce a delta function . The second type will contain 6 = (~~
) terms.

We shall denote the product of a “w term” of type i with an “x term” of type j by (i;j) .

TERMS OF TYPE (w;2)

An x term of type two contains the sum

K-Ilk K-Q~
c’ s;I-’ ±i(sk ±s.)
L L 6(sk— sJ )e

Sk l 2 k Sj 1~~j

~2 A2 (cos Sn w)(cos Sm w) e
±sm) 

~

K—min(Q
~
,Qk)

= p2 A2 ~~~~~~~
K—max (Q~

Qk)

The exponential is zero only for (j, k) = (1 ,2), (2 ,3), (3 ,4) or (1 , 4). For a non-zero ex-
ponent ial the sum is of the order 1, otherwise it is max(K — IQ~ — Q’ (, 0). Thus

2 A2 K2 0( 1), (j ,k ) = ( t , 3) or (2 , 4)

4 
. (A-4)

m a x ( K — Q J — Q k t , O) , other

TERM S OF TYPE (W ’,3)

The fourth moment of the Gaussian process is E(n4) = 3 V4. Let 13 be the numbe r of
terms for which s1 = S3 = s4 (can be shown to be K — max + m m  Q~). Then

20

-U—- -- 



- - U -  _________ 
--U

(w ,3) = 6(s~ — s 2 ) 6 ( s 3 — s 4) v 4

+ &(s~ — s4 ) 8(s2 — s 3) v 4

~

+ 5(s 1 — s3) 
~~~ 

— s4) v4 e2
~~~

S 3 S 4)

s l~ S2

+ 3 13p4 
. (A-5)

As will be seen in the fin al results , individual terms give contributions proportional
to powers of K and L. In any sum such as (A-S), terms of lower order may be neglected.
For example in (A-4), after summation over w (i.e., Q~ and 

~k~’ the upper term is of order

K 2 whereas the lower is of order K2 L or K3. ln part icular , oscillatory terms such as the
third term of (A-5) will be of lower order. (The reader should see E l i  for more informa-
tion. ) In what f ol lows, lower order terms will be pointed out and discarded without further
comment.

The third and fourth terms of (A-S) are of lower order. Also, the effects of setting
~ 53 and s 1 ~ ~~2 

in the first two may be neglected . Fler’m

(w~3) = p4 
l~~’ (o. (K — 1Q 1 — £,J)(K — 12 3 — 24I))

+ max (o. (K — — 241)( K — 12, — Q30)j  
. (A-6)

TERM (3, 2)

There are three significant non-zero terms of type 3 in w. Consider firs t Q j =

23 
= 24, 

~1 ~ 23. This gives rise to

(2K +2max (0,K—12 1 —2 31)) 
A2~~

2
~~2

2 1*23

which contains (see (A-4)) four contributions from x-term s plus two contributions from
x which are of lower order and have been ignored. The term 24, ~2 = £3, 

~i * ~2 
is the

same as above, whereas the term = £ 3. ~2 = 24~ ~i * ~~ 2 
is

74 ~~ e
1
~

22 1 222~~~4 max (0, K — t Il l — 2,1) A
2K2 

~2

21*22

21
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This is of lower order and may be neglected. The two contributing terms are identical,
hence ,

4 A2 K2 2
(3,2)=~ ~ ~ 

2(L~ (2K + 2max (0, K — tQ l — 2 3t))) 1 - (A-7)

We note that

(K - 12 1- 2 3t ) K~~~L
~~~

.

L max (0, K— t Il l —2 31) =

L ( K — t 2 1—2 31) K < L
2 1—2 3 1 <K

Also,

L

I2~ — 2 2 l~~~ ( ~~~ (2~ ~~~~~~~ ~~~

2 i 1

= 
~~~ ((L _ 2 2X L _ 2 2 + I) (22-1)22)

-

= ~~4,- (L
2 _ 2 L Q

2 + 2 2 ~~~+ L _ 2 2
2)

L3 L3 L3 L3
—~j- — -

~~
- +-.

~~
- + lower order terms ’-.T - (A-8)

Thus,

(K - t Il l - £31)  = K L2 - L3/3
2 1, 2

3

The situation is somewhat more complicated for K < L. We first calculate some
identities. Ignoring lower order terms, we have for L> K

~

- -

— 
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~~ 
1= ~~~~~~~l + ~~~~ >

~j 

~+~~ : 
~~k

tQf’Qk t<K 2
j ’

2
k ’ 

Q~=K+l 2k~~j~~ 
2k~

’
~~ 

I
j~~~~~ k

K

L L

= K 2 + K +  K
Q~=K+ I Qk K h i

= K 2 + K ( L — K ) + K(L — K) + lower order

= 2 K L — K 2 (A-9)

+ 2 (~~ 
— + lower order

IQj_Qk I<K 2j 2k 23=K+l j~~k °

L
K3 \~

‘ K+ 2  ~ 
—

~~ + lower order
3 -~~~ -.

K 3 1 1
= —

~~ + K - L — K ~ = K ~ L_ .I K3 
- (A- 1O)

Substitution of these expressions in (A-7) yields

2 K L 2 -L3/3 K~~ L
(3 , 2 ) 7 4 A 2 v K 2 

1 1 
. (A -I l )

K L - + K - L — K 3/3 K < L

TERM (3,3)

As in the previous case we consider the separate W terms. For 
~~ 

23 = 24,
* 2

3 
we have

74~,4 ~~ (K 2 + (max (O, K _  IQ I~~
Q3t ) ) 2l -

For = 24; ~2 = 2 3 ; ~i * ~~ 
the result is the same. For Q 1 = 23; 

~2 
= £4; ~i #2 2, a factor

ofe
2 2 l 2 2~en ters, and hence it is of lower order.

23
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Let us evaluate E 12 1 _ 2 31 2 . For K ~ L, we have

~~~ iQ 1 — Q 3I~ ~~~ 
(2 i ~~Q~~)

2

2 1, 23

= 
~~~

2 1 23

L4 /L2\
= 2 — 2 (

~
—

~-) 
+ lower order

= L 4(.~~~~_ 4)~~~~~~~~~~~~ 
( A- 1 2 )

and for K < L

~~ 
IQ~~~Q~~l 2 = ~~ Ik j — Q k t 2 + 2 ~ (Q~—Q~~) 2 +Iowerorder

IQj — Q k l<K 2j 2 k 2~=K+l 2
j

2
k °

K4
~~~7 + 2(L—K)(K3/3)+ lowero rder

K4 1 1 K4
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ - (A-13)

Thus

(3 ,3)= 2 y4 v4 K + 
‘
> (K

2 
— 2K 12 1— 2 3H- 

~~ 
_ 2 312)

Q 1— 2 31<K

4 K 2 L2 _
~~K L 3 + L± , K ) L

(A-14)

2 K 2 L2 +~~ K3L_ ~~
_ , K <L

24



TERM (1, 2)

The type I terms contain four cosines. The summation over two of them gives

B2 
~ (cos Qm~~)(co5 ~~~~ cos (Qm± Q n) w = B2 L2/4.

From (A-4), we see that only four of the type two terms are significant. Each of these gives
a contribution of (from (A-4))

B2 L2 V’
L (cos w Q~)(cos w £k )(cos w(Qj —

2j ’2k

A 2 K 2 2
• max (0 , K — tQ~ — -

We now use the identity

(cos a)(cos (a±b))(cos b) = 
cos 2(a ± b) + cos 2a + cos 2b (A - I S)

All terms but the 1/4 will be of lower order. Thus the above becomes

B2 A2 
~

2 K 2 L2 
~ max (0, K — l2

~ 
2k t

~
2i’2 k

which with (A-9) and (A- RI) yields

4 1 2 ~ ‘ 
KL 2 — L 3/3 K)~L

( J 2 ) ~~ B A v K L  
- (A-16)

K2L - K 3/3 , K<L

TERM ( 1,3)

Proceeding as for term ( 1 ,2) and using (A-6), we get two terms of the
form

B4v4 
~~ (cos £ 1w)(cos Q 2~~)(cos (I i — 22)w max (0, K — 12 1 — £2 1) 

2

— (cos Q 1w)(cos Q 2w)sin (2 1— 2 2)w max(0, K - t 2 1— 2 21) 
2

25
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since

cos~~(Q 1 — 2 2 + 2 3 — 2 4) cos(Q 1 — Q 2)c~ cos (Q 3 — Q 4ks.,

— sin 
~~ 

— 

~2~’~’ 
sin (€3 — Q4)w -

Because of the sine, the second term is of lower order . Also, ac~ording to ( 15) ,  the first
term equals 1 ‘4 plus terms of lower order. Thus

(l ,3) 2 B4v4 (~- > max (O, K —  Il l — Q 2 t )

(KL 2 — L 3/3) 2 K~~ L
. (A-l7 )

8 
(K 2

L — K
3

/3 )
2 

K < L

TERM (2,2)

As a consequence o f ( A -4), we are only concerned with the sets of indices j, k = 1 .2 or
1, 4 or 2 ,3 or 3,4. There will be four terms in which the indices of the two cosines in w
coincide wi th j and k , four terms in which they are disjoint , and sixteen terms in which one
inde x coincides and the other does not. We note that

— Q
~ ) e’ m 2

~~ .~2 = 172 
-

2m ’2n

Thus (2 .2) will contain

4 (cos w Q~)(cos 2k~’~ 
COS c

~
(Qj—Qk) max (0, K— 2j~~k t~ 

A~’K 2v2 
L72 B2

A2K2 2
+ 4 L (cos Qmw)(cos 2n~~ 

cos(Qm_Qn )w 6
~

2j —2 k~ 
max (0, K 

~j~~k 0 
~2j ‘2k ‘2m ‘2n

+ 16 (cos Q~w)(cos 
~~~~ 

COS (Q~ ± 2m~~-’ 
max (0. K— 1

~
—
~k

1
~ 
6
~
2n 2k~ 

cos( Q~ ±

A 2K 2v2 2 B2

I 

_ _ _  

4
1 .

26
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I

From (A-8) and (A-I 5), the firs t term is

KL 2 — L 3/3 , L~~~~ K

B2 12A 2v 2 ~~ . (A-l8)
K 2 L — K 3/3 , K~~~ L

The second term is

B212A 2v2K~ KL 3 . ( A- l 9)

The third term yields

l6~~ 
‘

~~

‘ 

(cos 2 Lj w)max ( O, K— t Qj --Ilk t ) b (Q n — Q k ) cos(Q n ±

2j ‘2 k’2n

1 1

A K  1 1 1

~

=8L ~~ (cos
2Qj~~)max(0.K— tQj~~k

t)Cos(QkUk) 
~~ 

v2 72 B 2 
-

Since those terms containing a plus sign are of lower order , four ter ms remain:

4L 5’ (cos 2 Q~w) max (0. K -  t2 j _ 2 k t ) A
~~~ P2

1
2 

B
2

2j ‘2k

A lso cos 2(2~o.~) = 1/ 2  + (cos 2Q~.~
)/ 2) :  so that neglecting lower order terms, we have

2 KL 2 — L 3/3 . K~~ ’ L
B

2
1

2 
A

2 p2 ~~~~~ . (A-20)

K 2 L — K 3f3 , K < L

Equations (A- l 8). (A- 19) and (A-20) yield

2 4 K L 2 — L 3 
, K~~~~’ L

(2.2 ) B 272A2v2~~~1~ . (A-2 1)
3K 2L + K L 2 -K 3 , K < L
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TERM (2,3)

There will be four terms in which the cosine terms of w match at least one pair
of indices in (A-6) and two terms in which they do not. The firs t four give

4B272v2 ~~ (cos Q 1 w)(cosQ2w)cos(21 —~ 2~~’
Il 

~~~~~~~

• K max (0, K— 12 1—2 2 1) + max (O.K— 12 1— £31)max(0 , K— IQ 2_ Q 3l)~].

The usual identity (A- 15) yields

B212 v4 5’ LK max (0, K— 12 1—2 2 1)

I~~2

+ max (0, K— 2 1—2 31) max (0 , K-  2 2—2 31)] . (A-22)

l ’~2,~3

The other terms are

2 B 272 v 2 
~~ (cos Q 1~ ,)(cos Q 3c~.,) cos( Q 1 + Q 3)w cos ( 2Q 2c~,)

• max (0, K — lQ
~ 

— £ 2 1) max (0, K — 2 3—2 2 1) + max (0 , K — t Q i —Q ,I)

‘max (0, K —  t Q 2 — Q 3t ) I

which is of lower order because of the cos (2Q 2w) factor.
In order to complete the evaluation of (2 ,3) we need some additional summation

ide ntities. For K ~ L, with lower order terms omitted ,

28
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£3

~~ 12 1 — 2 31 12 2 —2 31 = 

~~ 
(23 ~~~~~~ 

— £31
~~~~~~~~~~~~~~~~~ 

~~~l’~~~3 
2

2
1

+ (2 2-  23)I2~ -2 31

— ‘ 
= ~~~~ tQ 1_ 2 3t (4 ) (L2 _ 2 L Q 3 + 2 2 ~ )

2 1, 23

~~~~‘ I i 2
= L -~ (L 2 _ 2 1Q 3 + 22 ;)

£3

=~~~ ~~~(L4 + 8L 2 2~ + 4 2 ~ _ 4 L 3Q3 _ 8 L Q ~ )
23

= -~- (
~~5 +-

~~ L
5 +~~~~~L~~ 

— 2L~ — 2L5)

(A-23)

(Note that these su mmations are easily performed using the formula

= ~~~ ~ n+ I — a~~ 
1 ) + lower order terms ,

which may be proved by considering integral approximations. )
For K~~ L, let tQ 1 — Q 3k s a n d~~2 — Q 3f m .
Then, since the factors max (0, lQ~ — Q~I) restrict the summations to sl~~K , lml~~ K, for

~~~
‘ s ranges from 0 to mm (K , L — 2 3); and for ~ 23 it ranges from 0 to

mm (K , 23 —  I ) .  Thus
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L /niin(K.L—Q 3) min(K~Q3—I )\ /min(K 1L—2 3) min(K ,23— l)

+ 
~~~ 

+

s<K 23= 1 \ s=0 s=0 / \ m 0  m 0
m’~K

L / min(K ,L—2 3) min(K ,23— I ) \ 2

+ 

~~~ 
) - (A-24)

23 1 s 0  s 0

We now must consider the two “sub-cases,” 2K “~~ L and K <L  < 2K. For 2K< L,

we have from (A-24)

K / K Q 3_ 1 \
2 L—K+ l / K K

s~ K 23 I \ s 0  s 0  / Q 3 K+l \ s 0  s 0  /
m~ K

L J L—2 3 K

+ 
~~~ 

(
~~+~~)Q 3 L—K \ s 0  s 0

= (K + 23)2 + ~~~ (2K ) 2 + (1- £ 3 
+ K) 2

23 1 Q3=K+ 1 23=L—K

= ~~~~ K 2 + 2KQ 3 + 2 ~ +4K 2( L _ 2 K )
£ 3 1

L

+ (L - 23)
2 + 2K(L - 23) + K 2

2
3

=L—K

-: = K 3 + K 3
+~~~~~~~~~ +4K 2

L _ 8 K
3

+~~~~~~~~~ ÷ K 3 + K 3

= 4 K 2L _ ~~~2.K3 
. 

(A-25)
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Also,

K 2 L—K+ l

~~~s =  
~~ 

(
~+~

) ( K + Q 3)+  ~~ K2 2K

S~ K £3 1 23=K+l
m~ K

+ ~~ 
(
~~~~ 3)+~~~

) 
(L-23+K)

23
=L-K

= 

Q~~ l 

( 3 2
~~~~~~~~e

2 Q
3)

+ 2K3 (L— 2K) + 
[(L_Q ~~~

3 

+ 
(L.-23)2 

K +~~~~
- (L— 2 3)

23-L—K

K
4 K

4 K4 K
4 K

4 K
4 K

4 K 4

—
~~ 

+—
~~ ~~~~~~

= 2 K3L — ~~~~ K
’
~ 

(A-26)

and

sm = 

~~~ 

(
~ 

+ 
€
2 )

~~ 
+ (K~~)

2 
+ 

~~~ 

(
L_23

2 
+ 

2)2

s’~K 23= 1 Q3=K+ l 23
L—K

m~ K

= 

~~~ 
+ + ~

) + K4(L-2K)
2
3
=1

+ 
~~~ 

((
L_~3)4 K2(L;Q3)2

÷ K4)
23

=L-K

K 5 K
5 K 5 K

5 
K

5 K
5 16

= -~ -+ -~ - +~~~~ + K4L —  2K 5 + -~~~~~
+--

~~ 
+—

~~ = K4L-  1-~~~K
5 . (A-27)
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Thus for 2K < L, from (A-25), (A-26), and (A-27),

~~~ (K-sXK-m) 4 K ~L-~~ K~ -4K 4L+ ~~~~ + K ~L-~~~K~

= K 4L — 
~~~~~ K 5 

. (A-28)

Similar techniques are used for K < L ‘~~~ 2K:

L—K / K Q _ .I\2 K / L—93 Q3—l \ 2

~~~=~~~~ (~~~+~~~~) +  ~~~~~~~~~~s~ K £3 I \ s 0  s 0 /  23 L—K \ s 0  s 0
m’~K

L 1L—Q3 K \ 2

+
~~~~~ 

(
~~~~

+
~~~)23 K \ s0 s 0

L—K 

(K ÷ 23)
2 + ~~ L 2 + (L + K — 23)

2

23 1 23=L— K £3=K

— K 3) + L2(2K — L) ++(L3 — K 3)

= 2L 2K — L3/3 _4K 3 
. (A-29)

Also,

L_K 

( ÷~~~~~) K ÷ Q 3 ÷ ~~~ ((L_Q3)2
~~~~~~

)L
s~ K 23=1 23=L—K

m~ K

L /
~~~

-‘ ( ( L — 2 3)2 
K2

t + 4 2 ~~~~ ( L + K — Q 3)

23 K

j  
__________ 
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= 

L 

(~~~~~~~~

+

~~~~~~~~ 

23 + 
~~~ 

~~~ 
+*(K

3 _ L K 3
~~~~

L K 3 + K 3)

c- (L — 23)~ (L — 23)
2 (L — Q

3)K 2 
~~3

+ L 2 + K  2 + 2
Q
3=K

which after more calculation ,

= —LK 3 —
~~~~~~ + ~~ L2 K 2 —

~~~~ KL 3 + L4/3 . (A-30)

Finally,

sm 
‘~~~ 

( Q
~~

)

2 
~~ 

(
L_Q 3

2
÷
~~~

)

2

s<K Q 3=I 2 3=L— K
m<K

+ ~~ 
(

~~_~ 3
2 

+
~~~)2

23=K

which after some computation yields ,

‘c~’ 8K 5
7~~~~~~~~ 1 ‘ 1  L5

L ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ . (A-3 l )

s<K
m<K

Combining (A-29), (A-30), and (A-3 1), we have for K <L  ~ 2K ,

• 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

+ 3LK~ —~~~K~ . (A-32)
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We now substitute (A-9), (A-lO), (A-23), (A-28), and (A-32) into (A-22) to get

2K2L3 _ K L 4 +~~~ L5 ,

I ~

(2 ,3) = 0 y v 4 3 10 (A-33)

2K ~ L > K

L2K3 +4K 4L_ ~~~K 5 L~~ 2K

TERMS (1 1)+ (2 ,1) + (3, 1)

We note that since the cosine function is periodic , the summation in (A-2) for x of
type I may be rewritten (see (22) )  so that the product formula for the convolution holds.
Thus,

( 1 , 1) + ( 2 .1) + (3, 1) = E l~ (w) l 4 I7(A cos ~ k) I 4 
-

The second factor is (AK /2) 4. The firs t is given by (2 5 ) .  Consequently

~~~~~~~~~~~~~~~~~~~~~~ (2 L
2 l4 + L 3 B 2 l2 + L

1~~
) 

. (A-34)

RESU LT

The final result is given by

E(y 2) ( 1 , I ) + ( 2 . l ) + ( 3 , l ) + ( l . 2 ) + ( 2 , 2 ) + ( 3 , 2 ) + ( l ,3 ) + ( 2 ,3) + ( 3 ,3) ,

all of which have been computed above.
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APPENDIX B: TIME AVERAGING THE WEIGHT VECTOR

At low signal-to-noise ratios, the eigenvalues of the correlation matrix of the input
to the ALE will be approximately equal , and the system of linear difference equations (31)
will exhibit a single time constant r given by (33) ( 1 ,71. Then , with equati on (6) as an
initial condition

w 2(t) n~ (0)e t/T + C t (B-I )

where C t is independent of n~(0) since it depends only on inputs after t = 0. Since n~(t)
differs from w 2(t) only by a non -random quantity (6), and since E n~(t ) = 0,

2 / ‘ /
E(n 2(O) n 2(t)) = E n 2(0) e = y -  e t >  0 - (B-2)

This dependence is also mentioned in (6 1.
Let us now consider the time average of w ,

I
S Iq ~ Jw2 (t) dt -

0

The variance of q is given by

var( q ’) 4  E [J ~ 
n~ ( t ) n ~(s) dsdt]

f~ 
Jr /e_t t_5

~’T ds dt

4q
12 I T+r ( e

_T/ T _ I ) 1  - (B-3)
T-

For large T

Iim var(q ’) = 12 ~~ - (B-4)
T—’~

Note that the variable v appearing in equation (7) is homogeneous in w- of order 2

(i .e., depends on wj wk), and thus by factoring out (e tI T) we have

E(v(t) v( 0)) = E(v2(0)) e 2t 1’T - (~~5)
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Also, relationship ( I  1) is valid for all M. Hence , if

~~~~~~~~ ~~~y(n) , (B-6 )

var(~ ) = ~~- var(y — v ) + q v a r ( v )  (B-7)

where

q -.!~ 1T+~~ (e _ 2 T/ T _ 
l ) J  (B-8)

and

T N m a x ( 2K , K + L )  (B-9)

since y (n) is output every max (K , L + K)/K DFT ’s.
Combining equation (B-9 ) with the results of this report ’s second section , we have

a more accurate version of equation (30):

var (~ )rr .i3~.(E(Y 2)_ E( 7 ? ~ ))

+t l
(

~~E(Y 2~~~~~ + -~ç E (?~~)) .  (B- l0)

-

—

- 
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